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Abstract. This paper follows the work presented in [1] and [15]. It shows the
advances in the development of a theoretical framework which describes the
behavior of the Steinbuch’s Lernmatrix, whenever it operates with noisy input
patters. The obtained results allow positioning the Lernmairix, even four dec-
- ades afier its creation, as a good alternative for pattern classification and recog-
. nition.

1 _I_ntroduction

The Associative Memories have deserved the attention of numerous international
- tesearchers for more than four decades. Ore of the pioneers was the German scientist
Karl Steinbuch who, at the beginning of the Sixties, devised, developed and applied
the Lernmatrix [2,3]. The Lernmatrix constitutes a crucial antecedent in the develop-
ent.of the present models of associative memories, and constitutes one on the first
successful attempts to codify information into squares, well-known as crossbar [12].

n'_assoclatlve memory has such a fundamental intention: to correctly recover com-
plete patterns from input patterns, which can be altered with additive, subtractive or
combmed naise. The inherent probiem to the operation of the associative memories is
normally splited into two clearly distinguishable phases: the learning phase (genera-
tion) and the recall phase (operation of the associative memory).

An associative memory M can be formulated as an input-output system. The input
pattern is represented by a vector column denoted by x, and the output pattern by a
ctor column denoted by y. Each one of the input patterns forms an association with

the correspording output pattern. An association is denoted by (X, ¥} and, given a

spé_'c_i_ﬁc positive number £, the corresponding association will be (xk , yk) )
As'a convention, if m and # are the dimensions of the cutput and input patterns, re-
spectively, it is said that:

x*eAd" and yr e A", Vu=12,.,p

;Whg'_r:_é'A is any set predefined by the associative memory’s designer.

he j-th component of a column vector x" is denoted by xed".

nalogously, we can represent the j-th-component of 3" by ¥} € A".
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The associative memory M is represented by a mattix whose ij-th component is
my € B, where B is an appropriate set regarding the values in the set A [117; the ma-
trix M is generated from 2 finite fundamental set of associations, and its cardinality is

denoted by p & Z* . Ifu is an index, then the fundamental set is:
)i =120}

Fe " Y= - . .
i y H L2,..p , then the associative memory 15 called autoassociative;
otherwise it's called hetercassociative. For an heteroassociative memory the following

el 2,.. n B
statement is true: K { ’ ,p} XTEY

If a memory M responds to a version (that might be altered) of an input patiern with
the correct unaltered fundamental output pattern , then the recall is considered perfect.
Even though Steinbuch presented the Lernmatrix more than four decades agoa, no
investigator, including Steinbuch, had studied with scientific rigor the necessary and
sufficient conditions for perfect recall of the fundamental set and patterns that do not
belong to this one. The former two steps oceurred in [1, 15] and this work is another
step in the development of a theoretical framework that mathematicaliy describes the
behavior of the Lernmatrix, when the input patterns are noisy.

2 The Steinbuch’s Lernmatrix

The Lernmatrix is an heteroassociative memory, but it can act as a binary patiern
classifier depending on the choice of the output patierns; it is an input-output system

that gets & binary input pattern ed, A= {0,1} and produces the class
y' e A" (from m different classes) codified with a simple method: to represent the
class k€ {1, 24y m}, you must assign for the output binary pattern ¥" the foilow-
ing values: " =1, and y;L =0 for j= 1,2, k-Lk+1.,m.

Each component #l, of the Lernmatrix M is initialized to zero, and it is updated ac-

cordingly fo the following rule: 1t = + Amﬁ , where:

t

-+& ifyj‘ =1= x;l
Amy; =< —€ ify' =1 and x}* =0

0 otherwise

where £ it’s any positive constant previously choser.
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The recalling phase consists of finding the class which an input pattern ¥ ed
(0] m
belongs. Finding the class means to get the components of the vector 7 € A" which

® H ‘
corresponds to X ; accordingly to the constructing method of all ¥ | the class
should be obtained without ambiguity. i

0

[}] m
The i-th coordinate Vi of the class vector Jw 4

is obtained according to the
next expression, where Uis the maximum operator:

. il © | a ©
Lif Z.,a m;x; =Uj, [ZH My X j }

0 otherwise

V=

3 A Healthy Change of Notation

The way Steinbuch proposed the learning and the recalling phases is not adequate for
analyze the memory properties. That’s why we proposed an alternative characteriza-
tion of both phases, in which the concept of Steinbuch’s function is presented [1].

Definition 1. 4 Steinbuék s function is any function f : R IR with the prop-
erty: '
fO)=-LfD)=1
Definition 2. Let f : R 2 R be a Steinbuch’s function. Al Steinbuch’s vectorial func-
tionfor [ is any function f : R = R with the property:
f(x)
f(x,)
F(x)= ’
J(x,)
Now, it’s possible to propose an alternative and better (for this paper’s goals) charac-
terization for the learning and recalling steps.

Learning phase for the Lernmatrix

Let {(x“,y” ) p= 1,2,..,m} be a fundamental set and F' an Steinbuch's vecto-
\

rial function for f . The Lernmatrix M for the fundamental set is built accordingly to
the next rule:
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M=y e (F )

p=l

Recalling phase for the Lernmalrix
RLH —~
Let M be a Lernmatrix and x” 3 p-dimensional pattern. The pattern y* obtained

from x* and M is determinate as follows:
2 =Mex"

oo M @

¥ = 1ifz" =U,. 2,
' 0 otherwise

where 3¢ is not necessarily equal to ¥ . Indeed, if 7 = 3%, then the recalling is

perfect.

4 Learning and Perfect Recall Conditions for non-Noisy Patterns

n 1, 15] the authors presented several novel results concerning the necessary and
sufficient conditions for perfect recall for the Lernmatrix. In this paper, as will be
showi in the next section, we provide new results that regard with the learning and
recali for noisy patterns. For the former resuits we can recall the following:

pefinition 3. Ler A={0,1} and let ¥ = A" a pattern. We call characteristic set
of X° to the index set T* = {Ii x° = 1}. Its cardinaiity is denoted | T |

This concept is the spine of this framework. The first step will be to establish a rele-
tionship between this concept, the order relations and the Lernmatrix.

Lemma 1. Let A=4{0,1} and let ¥, xPeAd” be two paiterns, “then
<yt e TP

The proof of this lemma appears in [15]. The lemma means that an order relation
between patterns implies an order relation between their characteristic sets and vice
versa.

Furthermore, we showed in [1 51 the relation between {he recaliing phase and the char-
actetistic sets:

Lemma 2. Let M a Lernmatrix, let {(x“, yyjp= l,2,..,m} be the fundamental

L0

set. of M, % a random pattern  and 2 =Mex" . Then,

z* =e|T" ,rﬂ“’ |7 D
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The next step is to establish a connection between the characteristic sets and the nec-
essary and scfficient conditions for perfeet recalling. In the next 2 lemmas, whose
proofs are also given in [15], we synthesized the functionality of the Lernmatrix: these
results opened the door to understand its most important properties.

Lemma 3. Let M be a Lernmatrix, let {(x“ ,Vu= 1,2,..,m} be the fundamen-

tal set of M and x” a pattern, which may belong or not to the fundamental set of M.
Then, the recovered pattern from x° and M will be %, with »* <3,
o€ {L 2,..,m} if and only if {7 NT” 2] TPNT® VB e {1,2,..,m}and
a=p.

Lemma 4. Let M be a Lernmatrix, let {(x”,y“) T 1,2,..,m} be the fundamen-

tal set of M and x° 4 pattern, which may betong or not te the fundamental set of M.
Then, the recovered pattern from X and M will be ¥, with =37,
aefl,2,,m} i and only if |T°NT° PP NT"|VB e {L.2,...m}and
o=p.

Now, we also present a new lemma, which is equivalent to lemma 4, but it'll be useful
when the input patterns be altered with additive and mixed noise.

Lemma 5. Let M a Lernmatrix, let {(x“,y“)! p= 1,2,..,m} the fundamental set

(i)
of M and ¥  a pattern, which can belong or not to the fundamental set of M. Then,

" the recovered pattern from X" and M will be P, with y* =3 a e {I,Z,..,m}
it and onty if [(T*-TP)NT (e -1 )NT" | VB & {L.2,...m}and

Lo =R,
- Proof Let M a Lernmatrix, let {()cll Y = 1,2,,.,m} the fundamental set of M

(3
“and * an n-dimentional pattern. Let a an arbitraty index such that & € {1, 2,..,m}

) o~ ~ (i)
“andlet §%, with y* = 3" the recovered pattern for x
' 'Acc_ording to lemma 4,

|7 T B TP T | VB e {l,2,.,m}and o0 # B .

Bﬁt, we can rewrite the last ineguality as foliows:



96 F. A. Sdnchez-Garfias, et al.

TCNTCN0 RPN N0 |
TN N[TP U@ e N N[ U@ )
And by the distributive law:
|(re N N[N Nt
(@ nrenrU[T A nEey ]

Then, the sets (T“t nre ﬂTﬁ) and [T“ nNTe (e )C] are disjoint sets; and
the sets (TB nre ﬂT“’) and [TE' nre N )(::! are also disioint, so:

(rnre At Y+ [ nren@) >
|(TB nre ﬂT“j+’[TB N NEy ] '

Then,

[ nrne? ¥ >[7° nre Ny .
And by the definition of substraction between sets:
(e -TP)NTe (T -1 NTP
So we can conclude that:

| -1 )NTe P (70 - T NI | 9B e {2 mpanda %P

Now, we prove two theorems that are involved in the perfect recall for the Lernmatrix.

Theorem 1. Let M be a Lernmatrix, let {(x”,y”)] p= 1,2,..,m} be the funda-

mental set of M and x> a pattern in the fundamental set of M. Then, the recailed pat-
tern with x™ and M is 3%, and y* <37,

Proof Let M be a Lernmairix, and let {(x“ v u =1, 2,..,m} be the fundamen-

tal set of M and x* a pattern in the fundamental set of M. Let ™ the recalled pattern
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with x* and M. If « and P are arbitrary indexes such that &, 3 € {1,2,..,m}and

0+B, according with lemma 3 we have:

YT TN R TN

yEF ST TP NT

Then, for any two sets A and B, 4D B <> 42| B| and also T S>TPNT,

then, the proposition | 7% 2 T® N T* | is true, so y* € 3* is true. Finally, using
the fact that g and B were chosen arbitrarily the theorem is proved.
Theorem 2. Let M be a Lernmatrix, let {(x“,y“” uo=l, 2,..,m} be the funda-

. mental set of M and x™ a pattern in the fundamental set of M.. Then, the recailed
Cpattern with x™and M is ¥, with ¥* = 3%, if and only if the proposition
‘YBe {1, 2,,.,m},OL # B and —(x* < x*) is true.

* Proof Let M be a Lernmatrix, and let {(x“ PO =1 2,..,m} be the fundamen-
fal set of M and X* a pattern in the fundamental set of M. Let 3 the recalled pattern

Swith X an . Haoan are arbitrary indexes such that oL, p € 41, £,.., M an
ith x" and M. If o and bitrary ind h th 1,2 d

'a;'é.B, according with lemma 4 we have:

¥ =3 S| TN P TP N7 |

¥ =3 el T TP NI

Then, for any two sets Aand B, A B=| A[>|B| and T* > TP NT* if and
ba_ly if «(T < T*), then:

T PTPOT | (T < TF)
; A{;c;ar__c_iing tolemma 1, x* <x* & T < TP so,
| LT TP T e —(x* <xP)

T.}ie_'r'_a,'by transitivity, ¥* = 7 <> —(x* < x"). Finally, using the fact that a and p
r& chosen arbitrarily the theorem is proved.
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5 New Results on Noisy Input Patterns

5.1 Sustractive noise

In the following 2 theorems, we establish the sufficient conditions for perfect recail
when the input pattern is 2 noisy pattern, in particular when the pattern is affected by
sustractive noise:

Theorem 3. Let M be a Lernmatrix, let {(x”,y“)] y= 1,2,..,?11} be the funda-
mental set of M and X* a noisy pattern such that ¥* < x™ . Then, the recalled pattern
is 7, and " S3°,

Proof. Let M be a Lernmatrix, and let {(Jcp ) =L 2,..,m} be the fundamen-
tal set of M and X" a noisy patiern quch that ¥ < x* . Let J* be the recalled pat-

tern with  x” and M. According with lemma 3 and let & and P arbitrary indexes such

that ., B = {1,2,..,m}and oFB.
Yy <P o T N7 =7 NTe |

y < ol T 2| T NT*

Then, for any two sets A and B, Ao Bl 47 B| and also Y i N1,

then, the proposition | 7R TP T | its true, so Y < 7 is true. Finally, in the
fact that a and B were chosen arbitrarily the theorem is proved.
Theorem 4, Let M be a Lernmatrix, let {(Jc‘l e =1 2,..,m} be the funda-

mental set of M and X* a noisy pattern such that ¥ < x” . Then, the recalied pattern

with ®and M is ¥°, with y* =%, if and only if the proposition
Vh e {l,2,..,m},0t # P and (X" = x") is true.

Proof Let M bea Lernmatrix, and {(x”, YYo= 1,2,..,m} the fundamental set

¥ ~o V> -
of M and % a noisy pattern such that X < x* Let ¥ be the recalled pattern with
% and M. According with Jemma 4 and let o and § arbitrary indexes such that
a,pedl 2,..,m yand a#p.

y =5 T NI S TP T

o =5 S| T T 0T
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Then, for any two sets A and B, 4> B = A[>| B| and T TP N7 if and
only if (I = T?), then:

| T 5| TP NT™ | (T < T*)
According to lemma 1 ¥ < xP & T < T*, so

[T |5 TP OT™ jeo> —(3* <x™)

Then, by transitivity, " = 7* <> —(&* < x*). Finally, using the fact that « and B
were chosen arbitrarily the theorem is proved.

5.2 Additive noise

Finally, we prove that Lermatrix may recall patterns affected with additive noise, but
- in this case, we can find an upper bound for the amount of noise supported by the
associative memory.

- Theorem 5. Let M a Lemmatrix, fet {(x”,y“)| L= l,2,..,m}the fundamental set

of M and X" a noisy pattern such that x™ < X" . Then, the recalled pattern with
Fand M is ¥, with »* =3, if and only if the proposition

(e =TT =TT | OB e 1,2, mYo # B s true.

: Proof Let M a Lernmatrix, {(x”,y” Y= 1,2,..,??1} the fundamental set of M and

o

o
“ X 4 noisy pattern such that x* < ¥* . Let 7 the recalled pattern with ¥ and M.
 According with lemma 5 and let @ and P arbitrary indexes such that

.:.:Ot, e {1,2, ..,m}and o#p.

| “ =3 e (T -TPNT (T —T"‘)ﬂT“]
v =5 e[ TN N S (@ - ONT? |
._._T_hen, according to lemma 1, T° N7 =72, s0

=5 o [T Naty ]]>|(1r“ T NT1* |
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S| -T° nre

7]

Finally, in the fact that @ and B were chosen arbitrarily the theorem is proved.

7]

Even more, (T‘x I ) is the additive noise in the paitern, so

y=y e

is a constant term once the Lernmairix is generated.

7]

We can notice, that

1S an

upper bound for the amount of additive noise for a patiern .

5.3 Mixed noise

As additive noise, in this section we can find an upper bound for the amount of mixed
noise supported by the associative memory.

Theorem 6. Let M a Lernmatrix, let {(x“ =12, m}the fundamental set

of M and X" a pattern affected with mixed noise. Then, the recalled pattern with
Fand M is ¥°, with 3¢ = §*, if end only if the proposition

|(re -7 )NT (-1 )NT*| VBe {1,2,.,m},0 % B is trve.
Proof 1.et M a Lernmatrix, {(Jc}l =52, m} the fundamental set of M and

o~ ~0
X* g pattern affected with mixed noise. Let 7 the recalied pattern with ** and M.
According with lemma 5 and let o« and P arbitrary indexes such that

o, B e {1,2,..,mand o7p.
= e (0 =TP T 1 (= -1 nre
Finally, in the fact that @ and f were chosen arbitearily the theorem is proved.

since (* =T° YT ~T*YNT®, then i -Tﬂjz (- ~TP)NT*

we can rewritte the result of theorem 6 as foliows:

= - )y2 (-1 T o (F -1 TP

, 80

We can notice, that ‘[T“ ~-T* ]‘ is 2 constant term once the Lernmatrix is gener-

[Tu —TB]l is an upper.

ated; (Tu HT“) is the additive noise in the pattern, sO
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bound for the amount of additive noise for a pattern x°

i(T” -7

additive noise.

, but since

(Tu -T7* )ﬂ T ! , the Lernmatix is less robust to mixed noise than

6 Experimental Results

In this section, we show the experimental support to the theoretical results. We genes-
ated a Lernmatrix with the fundamental set of figure 1.

054289
86731

"-___The input patterns were images with 50x50 pixels, and the output patternis were buildt
according to the method described in section 2. Then, we generate 100 noisy patterns
. for each fundamental pattern, for each kind of noise and for each and for each amount

“v.of noise. This fundamentai has the property VBG{I,Z,..,m},aiBan&

©—(x* < xP) istrue, so the memory is perfect according to theorem 2.

.For input patterns with sustractive noise, we obtained perfect recalling form 0 to 87%
- of sustractive noise and other results are presented in table 1. Oterwise, the recovered
7 pattern is greater than the expected pattern, according to theorem 3.

: Noise 88 90 95 98 99

% of pertect recalling 99.8 99.6 96.1 76.6 42.9

‘For input patterns with additive noise, we obtained perfect recalling form 0 to 69% of
.- additive noise and other results are presented in the next table.

‘I Noise 70 100 150 200 220

“1.% of pertect recalling 99.% 95.2 59.5 20 18.9

Fo'_r input patterns with mixed noise, we obtained perfect recalling form 0 to 5% of
- mixed noise and other results are presented in the next table:

“i Noise 6 10 20 30 50

% of pertect recailing 99.9 94.3 88.8 75.7 25.3

: '-._C_(_)_nclusions and Future Work

s work is another step in the development of a theoretical framework that mathe-
matically describes the behavior of the Lernmatrix., The relevance of the results pre-
sented in this article allows us to affirm that this work lays clear ways for those who
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are interested in making future research on the subject, this is: to search for some other
properties that may exhibit this associative memory; the conditions under which satu-
ration occurs when several patterns that comprise of a same class are used; the possi-
ble creation of a new version of the Lernmairix, that not only works on binary pat-
terns. It is suggested to combine all this baggage of ideas refated to the Lernmatrix
from Steinbuch, with known models of associative memories that enjoys of great pres-
tige, such as: The model of Kanerva, the Hopfield memory, the BAM of Kosko, the
Morphological Associative Memories and the afl Associative Memaries.
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